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Abstract

Using molecular dynamics simulations and the Green–Kubo method, the thermal transport in the Lennard-Jones

argon face centered cubic crystal is described by two time constants related to the decay of the heat current auto-

correlation function. The first time scale is associated with short wavelength acoustic phonons that have mean free

paths equal to one half of their wavelength. The associated thermal conductivity is independent of temperature, and has

a value around 0.09 W/mK. The second time scale is longer, and corresponds to acoustic phonons with mean free paths

longer than one half of their wavelength. The associated thermal conductivity is temperature dependent, and ranges

from 3.92 W/mK at a temperature of 10 K to 0.08 W/mK at a temperature of 100 K. This decomposition allows for a

comparison of the crystal phase results with those from corresponding amorphous and liquid phases.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Heat transfer in a dielectric solid, where the electrons

are tightly bound to the atomic nuclei, is realized through

the transport of phonons, quanta of energy associated

with lattice vibrations. To predict the thermal conduc-

tivity of such materials, existing analysis techniques re-

quire numerous simplifications and assumptions before

solvable forms are obtained, and are unable to take into

account structural details at the atomic level. There is

limited application of these methods to new and complex

materials. Furthermore, these approaches deal with

analysis in phonon space, and can be difficult to relate to

the physical structure of the material.

In applications of the Boltzmann transport equation

(BTE) under the relaxation time approximation to pre-

dict the thermal conductivity, it is commonly assumed

that only acoustic phonons contribute to the thermal
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transport, and a simplified form of the phonon disper-

sion relation is often used. Furthermore, the temperature

and frequency dependencies of the relaxation times must

be specified, and the results must be fitted to the experi-

mental data. In some cases, a single relaxation time is

assumed to be valid for all phonon modes. This approach

has been used to analytically and numerically investigate

silicon [1–3], germanium [1,4,5] and alumina [6].

In the application of the gas kinetic theory formu-

lation to the solid state, the thermal conductivity, k, is
given by [7]

k ¼ 1

3
q
X
i

cv;iuiKi ¼
1

3
q
X
i

cv;iu2i sK;i; ð1Þ

where the summation is over the 3N phonon (normal)

modes of the system (where N is the total number of

atoms), q is density, and cv;i, ui, Ki and sK;i are the mode

dependent specific heat, phonon speed, phonon mean

free path, and kinetic theory phonon relaxation time,

respectively.

The specification of all the parameters in Eq. (1) for

even a nanometer sized system is a formidable task, as

many of them are not readily predicted or available.
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Nomenclature

a lattice constant, constant

A constant

b constant

B constant

cv specific heat at constant volume

E energy (kinetic and potential)

f frequency

F force

�h Planck constant/2p, 1.0546· 10�34 J s

kB Boltzmann constant, 1.3806· 10�23 J/K

k thermal conductivity

ltd length scale in transient diffusion time

m Lennard-Jones mass scale, 6.63 · 10�26 kg

n number density of atoms (N=V )
N number of atoms

p pressure

q heat current vector

r; r particle position, interparticle separation

t time

T temperature

u phonon speed

U potential energy

v particle velocity

V volume

x �hx=kBT

Greek symbols

a thermal diffusivity

b deviation of MD specific heat from classical-

harmonic value

� Lennard-Jones energy scale, 1.67· 10�21 J

j wave number

K phonon mean free path

q density

r Lennard-Jones length scale, 3.40 · 10�10 m

s time constant

x angular frequency

Subscripts

ac acoustic

CP Cahill–Pohl

D Debye

equ equilibrium

i summation index, particle label, intermedi-

ate

j summation index, particle label

lg long range

nn nearest neighbor

o self (referring to a particle)

K kinetic

LJ Lennard-Jones

sh short range

td transient diffusion

V Volz et al. model

1784 A.J.H. McGaughey, M. Kaviany / International Journal of Heat and Mass Transfer 47 (2004) 1783–1798
Hofmeister [8] has used such an approach with appro-

priate simplifications and fitting parameters to predict

the thermal conductivity of materials in the earth’s

mantel.

Integration of Eq. (1) over all phonon modes leads to

k ¼ 1

3
qcvuK ¼ 1

3
qcvu2sK; ð2Þ

where cv, u, K and sK are now average values. The

specific heat is the bulk value, and the phonon speed is

generally taken as some mean speed of sound in the

material. The value of the mean free path/relaxation

time is fitted from experimental results for the other

parameters. Thus, Eq. (2) cannot be used to predict the

thermal conductivity.

Cahill and Pohl (CP) [9,10] have proposed a model

for the thermal conductivity of amorphous solids, given

by

kCP ¼ p
6

� �1=3
kBn2=3

X
i

ui
T
Ti

� �2 Z Ti=T

0

x3ex

ðex � 1Þ2
dx

" #
;

ð3Þ
where Ti is defined as uið�h=kBÞð6p2nÞ1=3, x is �hx=kBT , kB is

the Boltzmann constant, n is the number density of

atoms, T is temperature, �h is the Planck constant divided

by 2p, x is angular frequency, and the summation is

over the three sound modes of the solid (one longitudi-

nal and two transverse). This model is an extension of

the Einstein thermal conductivity [10,11]. The mean free

path of every phonon is assumed to be equal to one half

of its wavelength, the smallest physically meaningful

value it can take on. The predictions of a phenomeno-

logically similar model have been interpreted as a

minimum thermal conductivity [12]. Experimental

measurements of a range of amorphous solids have not

yielded any thermal conductivities significantly below

kCP [10].

Molecular dynamics (MD) simulations, where the

position and momentum space trajectories of a system

of particles are predicted using the Newton second law

of motion, offer an alternative approach. No assump-

tions about the nature of the thermal transport are re-

quired before predicting the thermal conductivity. The

only inputs are an atomic structure and appropriate

interatomic potential, which can be constructed from
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experimental and/or ab initio results. Observations at

the atomic level, not possible in experiments, can be

made.

Molecular dynamics has been used to predict the

thermal conductivities of a wide variety of dielectric

solids and liquids with varying degrees of success [13–

29]. Challenges include finding suitable interatomic

potentials and taking into account size effects that result

from computational limits (e.g., a finite sized simulation

cell imposes an upper limit on the allowed phonon

wavelengths). Much of the work has focused on the

prediction of the bulk phase thermal conductivity, and

not on the atomic level features and mechanisms that

are responsible for it.

In this series of two papers, a methodology is pre-

sented by which the thermal conductivity of a dielectric

crystal can be decomposed into distinct components

associated with different length and time scales. In

conjunction with other data extracted from the simula-

tions, the thermal conductivity can then be related to the

atomic structure. In this paper, Part I, the concepts and

ideas are formulated and developed through the use of

the Lennard-Jones (LJ) argon face centered cubic (fcc)

crystal, amorphous, and liquid phases, and then applied

to complex silica structures in the following paper [30]

(referred to hereafter as Part II).

Here, the techniques available for predicting the

thermal conductivity of a dielectric material using MD

are reviewed. The MD simulation procedures are de-

scribed. The thermal conductivity decomposition is

introduced, applied to the LJ argon fcc crystal, and

validated through comparisons to analytical predictions,

MD results for the thermal conductivity of the corre-

sponding amorphous and liquid phases, and particle–

particle energy correlation functions. The multiple time

constants extracted from the decomposition are shown

to have a physical basis not found for the single time

constants in the kinetic theory and BTE models. The

cumulative frequency dependence of the thermal con-

ductivity predicted by the MD and BTE approaches is

also examined.
2. Molecular dynamics thermal conductivity prediction

Three main techniques have been developed to pre-

dict the thermal conductivity of a dielectric material

using MD simulations. These are the Green–Kubo (GK)

approach (an equilibrium method), a direct applica-

tion of the Fourier law of conduction (a steady state,

non-equilibrium method, sometimes called the direct

method), and unsteady methods. The majority of recent

investigations have used one of the first two methods,

and these are discussed here.

The net flow of heat in a solid, given by the heat

current vector q, fluctuates about zero at equilibrium. In
the GK method, the thermal conductivity is related

to how long it takes these fluctuations to dissipate, and

for an isotropic material is given by [31]

k ¼ 1

kBVT 2

Z 1

0

hqðtÞ � qð0Þi
3

dt; ð4Þ

where V is the volume of the simulation cell, t is time,

and hqðtÞ � qð0Þi is the heat current autocorrelation

function (HCACF). In materials where the fluctuations

are long lived (i.e., the mean free path of phonons is

large), the HCACF decays slowly. The thermal con-

ductivity is related to the integral of the HCACF, and is

accordingly large. In materials such as amorphous sol-

ids, where the mean free path of phonons is small,

thermal fluctuations are quickly damped, leading to a

small integral of the HCACF and a low thermal con-

ductivity. The heat current vector is given by [31]

q ¼ d

dt

X
i

riEi; ð5Þ

where the summation is over the particles in the system,

and r and E are the position vector and energy (kinetic

and potential) of a particle, respectively. For a pair

potential, such as the LJ potential, Eq. (5) can be recast

as [31]

q ¼
X
i

Eivi þ
1

2

X
i;j

ðFij � viÞrij; ð6Þ

where v is the velocity vector of a particle, and rij and Fij

are the interparticle separation vector and force vector

between particles i and j, respectively. This form of the

heat current is readily implemented in an MD simula-

tion.

The GK method has been used in simulations of LJ

argon [15,17,22], b-silicon carbide [18], diamond [21],

silicon [24,29], amorphous silicon [14], germanium based

materials [25], and nanofluids [28]. The main challenge is

the specification of the integral in Eq. (4). This aspect of

the GK method will be addressed in detail in Sections

5.1 and 5.2.

In the direct method, a one-dimensional temperature

difference is imposed on a simulation cell. The resulting

heat flux is used to determine the thermal conductivity

using the Fourier law of conduction. As an alternative, a

heat flux can be imposed, and the resulting temperature

profile determined. To allow long wavelength modes to

exist and to minimize the effects of thermal boundary

resistances at the hot and cold sinks (i.e., to reduce size

effects), the simulation cell is often taken to be long in

the direction of the temperature gradient. The applica-

tion of a temperature difference on the order of 10 K to a

nanometer sized sample results in very large heat fluxes,

and non-linear temperature profiles can develop. The

use of the direct method is questionable in these

cases. This method has been used to predict the thermal
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conductivity of amorphous silica [19], zirconia and yt-

tria-stabilized zirconia [26], LJ systems [23,27], and

various liquids [16,20]. Schelling et al. [29] address the

size effects for silicon by predicting the thermal con-

ductivity for a range of simulation cell sizes, and taking

a limit of the results as the cell size goes to infinity. Good

agreement with GK predictions is found at a tempera-

ture of 1000 K.

The GK method is used in the current investigation.

As will be seen, it allows for the extraction of informa-

tion not accessible in the direct method. It is also

advantageous for the large unit cell crystals to be dis-

cussed in Part II, where large simulation cells would be

required to get well defined temperature profiles. The

electronic component of the thermal conductivity for all

cases considered is assumed negligible. This is a very

good assumption for the van der Waals solids (such as

argon), which have filled electron shells.
3. Simulation procedures

As a starting point for investigating what MD sim-

ulations can reveal about the nature of atomic level

thermal transport in dielectrics, materials described by

the LJ potential are considered. Choosing a simple sys-

tem allows for the elucidation of results that may be

difficult to resolve in more complex materials, where

multi-atom unit cells (and thus, optical phonons) can

generate additional effects. The LJ atomic interactions

are described by the pair potential [32]
UijðrijÞ ¼ 4�
r
rij

� �12
"

� r
rij

� �6
#
; ð7Þ
Fig. 1. Local environment for an atom in (a) the fcc crystal and (b

neighbors. For the amorphous phase, the 12 nearest atoms are show

neighbors, all the atoms are the same. Also shown are representative

atoms for each case. The motions in the fcc crystal are isotropic and eq

are not.
where Uij is the potential energy associated with particles

i and j (i not equal to j). The depth of the potential

energy well is �, and corresponds to an equilibrium

particle separation of 21=6r. The LJ potential describes

the noble elements well. Argon, for which r and � have
values of 3.40· 10�10 m and 1.67· 10�21 J, respectively

[32], is chosen for the current investigation. The fcc

crystal, amorphous and liquid phases are considered.

The 12 nearest neighbors of an atom in the fcc crystal

and amorphous structures are shown in Fig. 1(a) and

(b), respectively. In the fcc crystal all atoms are at

equivalent positions, and the atomic displacements are

isotropic. In the amorphous phase each atom has a

unique environment, with a range of neighbor orienta-

tions and bond lengths. The resulting atomic displace-

ments are anisotropic.

All reported data correspond to simulations in the

NVE (constant mass, volume and energy) ensemble at

zero pressure with a time step of 4.285 fs. This time step

was found to be sufficient to resolve the phenomena of

interest (e.g., the smallest time scale of interest in the

heat current is about twenty time steps). The simulation

cell is cubic and contains 256 atoms. In similar simula-

tions, Kaburaki et al. [17] have found good agreement

between the fcc crystal thermal conductivities predicted

from cells containing 256 and 500 atoms. This result

indicates that 256 atoms are sufficient to eliminate size

effects. Periodic boundary conditions are imposed in all

directions. The equations of motion are integrated with

a Verlet leap-frog algorithm [33]. The atomic interac-

tions are truncated and shifted at a cutoff radius that is

one half of the length of the simulation cell (so as to

include as many atoms as possible in the dynamics), and

the pressure is corrected as given by Frenkel and Smit

[34]. For the fcc crystal, temperatures between 10 and
) the amorphous structure. In the crystal, there are 12 nearest

n. While the color of the center atom is a darker gray than the

atomic displacements (not to scale) for some of the neighbor

uivalent between atoms, while those in the amorphous structure
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100 K are considered in 10 K increments. Melting occurs

above a temperature of 100 K. The amorphous phase is

generated by heating the fcc crystal to a temperature of

300 K, running for 104 time steps to eliminate any

memory of the initial configuration, and then quenching

at 8.5 · 1011 K/s back to a temperature of 10 K. The

amorphous phase is stable up to a temperature of 20 K.

Above this point, the equilibrium thermal fluctuations in

the system are large enough to return the atoms to the

fcc crystal structure. This is consistent with previous

findings [22]. Temperatures of 10, 15, and 20 K are

considered. The liquid phase is obtained by heating the

amorphous phase until melting occurs. Using this ap-

proach, a stable liquid is found to exist at temperatures

as low as 80 K. Due to the small length and time scales

used, the melting temperature, which experimentally is

83.8 K, is not well defined, and it is possible to have

stable fcc crystal and liquid phases at the same temper-

ature and pressure, although the densities are different.

Temperatures of 80, 90, and 100 K are considered for

the liquid simulations.

As described, the MD simulations are classical. The

use of quantum corrections at low temperatures in MD

simulations is still under discussion. While some have

found improved agreement with experimental results

when the temperature and thermal conductivity are

appropriately scaled [18,24], others have shown that

the corrections are negligible [21]. There are many

other factors that contribute to the success of a simu-

lation in reproducing experimental results (e.g., the

suitability of the interatomic potential and the size of

the simulation cell). For argon, quantum effects are not

expected to be significant [32], and no corrections are

made.

To determine the zero pressure cell size (which is

temperature dependent), simulations were run in the

NpT (constant mass, pressure and temperature) ensem-

ble at the temperatures of interest. The temperature and

pressure were controlled with a Nose-Hoover thermo-

stat and a Berendsen barostat [35]. After an initialization

period of 2· 105 time steps (0.857 ps), the zero pressure

cell size was found by averaging the value of the cell size

over a further 2 · 105 time steps. The potential energy of

the system as a function of temperature was also

determined, and is used in the temperature setting pro-

cedure in subsequent simulations.

In all subsequent simulations discussed, an initiali-

zation period of 5· 105 time steps has been used. The

system is run in the NVT (constant mass, volume and

temperature), ensemble for 3 · 105 time steps. To set the

temperature for the NVE ensemble, the potential energy

of the system is then monitored every time step. When it

reaches a value within 10�4% of the desired potential

energy (this generally takes less than 5000 time steps),

the ensemble is switched to NVE, and the system is run

until the total number of time steps is 5 · 105. While
running in the NVE ensemble, the total energy is con-

served to within 0.005%.

The thermal conductivity is calculated using the GK

method as described in Section 2. All simulations used in

these calculations consist of an additional 106 time steps

over which the heat current vector is calculated every

five time steps. A correlation length of 5 · 104 time steps

with 2· 105 time origins is used in the autocorrelation

function. For all cases, five independent simulations

(with random initial velocities) are performed and the

HCACFs are averaged before finding the thermal con-

ductivity. This ensures a proper sampling of phase space

[18]. For the fcc crystal at a temperature of 10 K, where

the correlation time is long, 10 independent simulations

are performed. For the energy correlation data, a further

105 time steps are run beyond the initialization period,

during which the atomic energies are calculated every

time step.
4. Prediction of system parameters from Lennard-Jones

potential

4.1. Unit cell size

When relaxed to zero temperature, the MD fcc

crystal unit cell parameter, a, is 5.2414 �AA, which corre-

sponds to a cutoff radius of 3.1r. The experimental value

is 5.3033 �AA [32]. Li [22] has found values of 5.3050 �AA for

a cutoff radius of 2.5r, and 5.2562 �AA for a cutoff radius

of 5r.
The lattice constant can also be predicted from the

analytical form of the LJ potential. To do this, the total

potential energy associated with one atom, Ui, must be

considered. If the energy in each pair interaction is as-

sumed to be equally distributed between the two atoms,

Ui will be given by

Ui ¼
1

2

X
i6¼j

Uij; ð8Þ

which for the fcc crystal lattice can be expressed as [32]

Ui ¼ 2� A12

r
rnn

� �12
"

� A6

r
rnn

� �6
#
; ð9Þ

where A12 and A6 have values of 12.13 and 14.45,

respectively, and rnn is the nearest neighbor separation.

By setting

oUi

ornn
¼ 0; ð10Þ

the equilibrium value of rnn is found to be

rnn;equ ¼
2A12

A6

� �1=6

r ¼ 1:09r: ð11Þ



1788 A.J.H. McGaughey, M. Kaviany / International Journal of Heat and Mass Transfer 47 (2004) 1783–1798
For argon, the equilibrium separation of Eq. (11) cor-

responds to a unit cell parameter of 5.2411 �AA, which

agrees with the zero temperature MD result to within

less than 0.01%. This gives confidence to the simulation

procedures used. Differences between the current MD

results and those of Li [22] can be attributed to the form

of the potential cutoff used and the pressure calculation

method.
4.2. Period of atomic oscillation and energy transfer

In a simplified, real space model of atomic level

behavior, the energy transfer between neighboring

atoms can be assumed to occur over one half of the

period of oscillation of an atom [10,11]. The associated

time constant can be estimated from the Debye tem-

perature, TD, as

sD ¼ 2p�h
2kBTD

: ð12Þ

The factor of two in the denominator is included as one

half of the period of oscillation is desired. By fitting the

specific heat (as predicted by the MD zero temperature

phonon density of states) to the Debye model, the Debye

temperature is found to be 89 K. This compares well to

the experimental value of 85 K [37]. The MD result is

used in subsequent calculations, and gives a sD value of

0.270 ps (�63 time steps).

An estimate of this time constant can also be made

using the LJ potential. The time constant is related to
t,
0 1.00.5

0

1.5

1.0

0.5

-0.5

<
E

nn
(t

)E
o(

0)
>

/<
E

nn
(0

)E
o(

0)
>

0

<
E

nn
(t

)E
o(

0)
>

/<
E

nn
(0

)E
o(

0)
>

0

-0.5

0.5

1.0

T=10 K

nnT=100 K

T

Fig. 2. Nearest neighbor particle–particle energy correlation function

from the mean values. A longer time scale is shown for T ¼ 10, 30,

coherence at higher temperatures is evident.
the curvature of the potential well that an atom expe-

riences at its minimum energy. Assuming that the

potential is harmonic at the minimum, the natural fre-

quency of the atom will be given by

x ¼ 1

m
o2Ui

or2nn

����
rnn¼rnn;equ

 !1=2

¼ 22:88
�

r2m

� �1=2
; ð13Þ

where m is the mass of one atom, which for argon is

6.63· 10�26 kg, and Ui and rnn;equ are taken from Eqs. (9)

and (11), respectively. One half of the period of oscil-

lation is then

sLJ ¼
1

2

1

2px
¼ 0:00348

r2m
�

� �1=2

; ð14Þ

which evaluates to 0.275 ps, within 2% of sD.
The physical significance of this time constant can be

further investigated by considering the flow of energy

between atoms in the MD simulation cell. This is done

by constructing energy correlation functions between an

atom and its 12 nearest neighbors. The calculations are

based on the deviations of the particle energies from

their mean values. As all the atoms in the fcc crystal

simulation cell are at equivalent positions, the results

can be averaged over neighbors, space, and time. The

resulting correlations for the fcc crystal are shown in

Fig. 2 for all temperatures considered. The curves are

normalized against their zero time value to allow for

comparison between the different temperatures. Similar

calculations have been made for the amorphous phase.
ps
2.52.01.5

t, ps
15105

T
10 K
30 K
50 K

s for the fcc crystal. The energy data correspond to deviations

and 50 K in the inset plot, where the decrease in the long time



Table 1

Thermal conductivity decomposition parameters and predicted values. The value of k given for the fcc crystal and liquid phases is from

the exponential fits, while that for the amorphous phase is specified directly from the integral of the HCACF

Structure T , K q, kg/m3 snn, ps sac;sh, ps sac;lg, ps kac;sh,
W/mK

kac;lg,
W/mK

k, W/mK

Fcc crystal 10 1820 – 0.285 23.0 0.082 3.92 4.00

20 1801 0.206 0.264 9.52 0.078 1.49 1.57

30 1780 0.236 0.269 5.69 0.087 0.816 0.903

40 1756 0.248 0.264 3.79 0.091 0.483 0.574

50 1729 0.257 0.268 2.93 0.100 0.316 0.417

60 1701 0.261 0.266 2.47 0.106 0.225 0.331

70 1671 0.265 0.252 1.65 0.102 0.141 0.243

80 1639 0.265 0.246 1.50 0.105 0.112 0.218

90 1597 0.274 0.222 0.900 0.093 0.079 0.172

100 1541 0.283 0.187 0.486 0.067 0.077 0.144

Amorphous 10 1727 0.257 – – – – 0.179

15 1716 0.261 – – – – 0.176

20 1705 0.261 – – – – 0.180

s1, ps

Liquid 80 1450 – 0.204 – – – 0.137

90 1392 – 0.207 – – – 0.123

100 1328 – 0.211 – – – 0.110
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In this case, the number of nearest neighbors used is

based on a uniform cutoff that gives an average value of

12 for the entire system, and the spatial averaging is

assumed to be valid.

The first peak locations, which we denote as snn, for
the crystal and amorphous phases are given in Table 1.

The resolution in the values is one time step, which is

about 0.004 ps. For the crystal, the value of snn increases
with temperature, which is due to the decreasing density

(also given in Table 1). As the atomic separation in-

creases, it takes longer to transfer energy between two

atoms. This density dependence is confirmed by the

amorphous results. At temperatures of 10 and 20 K,

where the densities are very close to the fcc crystal values

for temperatures of 50 and 60 K, the values of snn are

indistinguishable from the fcc crystal values. Between

temperatures of 40 and 100 K, the time constants sD, sLJ
and snn agree to within 10%. This agreement supports

the assumed link between the period of atomic oscilla-

tion and the time scale of the atom to atom energy

transfer. The snn results at low temperature will be

addressed in Section 5.2.2.
5. Results and analysis

5.1. Heat current autocorrelation function

The HCACF and its integral (whose converged value

is related to the thermal conductivity through Eq. (4))

are shown in Fig. 3(a) and (b) for all cases considered.
The HCACF is normalized by its zero time value to

allow for comparisons between the different tempera-

tures. The integral is calculated using the trapezoidal

rule. Longer time scales are shown for the fcc crystal in

Fig. 4(a)–(c) for temperatures of 10, 50, and 100 K,

respectively. Note that as the temperature increases, the

HCACFs of the three phases are approaching each

other.

The fcc crystal HCACF shows a two stage behavior.

There is an initial drop, similar for all cases, followed by

a longer decay, whose extent decreases as the tempera-

ture increases. We believe that the oscillations in the

secondary decay are a result of the periodic boundary

conditions. This hypothesis is supported by results ob-

tained using larger unit cells, where the period of the

oscillations increases as the cell size increases (not

shown). The integral of the HCACF converges well, and

the thermal conductivity can be specified directly from

the graph by averaging the integral over a suitable

range. To remove the subjective judgment, Li et al. [18]

have proposed two methods by which the thermal con-

ductivity can be specified. In the first dip (FD) method,

the integral is evaluated at the first place where the

HCACF goes negative. In the exponential fit (EF)

method, an exponential function is fitted to the HCACF

beyond a certain point (determined on a case by case

basis), and this function is then used to calculate the

contribution of the tail to the integral. Up to that point

the integral is evaluated directly. In their investigation of

b-silicon carbide, no significant differences are found

between the predictions of these two methods.
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The liquid HCACF shows a single stage decay, with a

time scale comparable to that of the initial drop in the

fcc crystal HCACF. Both the FD and EF methods are

suitable for specifying the thermal conductivity. The

amorphous phase HCACF shows a very different

behavior. It drops below zero in the initial decay, and

oscillates between positive and negative as it converges

to zero. The velocity autocorrelation function for

amorphous LJ argon shows a similar form [36]. We

interpret this behavior as follows. In the fcc crystal, each

atom experiences the same local environment. By aver-

aging over time, the same is true for the liquid. This is

not the case for the amorphous solid, where each atom

has a distinct local environment. At short time scales,
atoms near their equilibrium positions experience the

free trajectory of a liquid atom. When the atom even-

tually feels the effects of the other atoms, the trajectory

changes. Because the intended trajectory cannot be

completed, the correlation goes negative. The time scale

for this behavior is comparable to that of the liquid

HCACF. The FD and EF methods are not appropriate

here, and the thermal conductivity must be found from a

direct specification of the integral.

In the following section, a method by which the fcc

crystal HCACF (and thus the thermal conductivity) can

be decomposed is presented. The results will be used to

understand the form of the HCACF, and the resulting

thermal conductivity trends and magnitudes.
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5.2. Thermal conductivity decomposition and results

5.2.1. Decomposition model

Based on the observed shape of the fcc crystal

HCACF, it can be fitted to a sum of two exponential

functions as

hqðtÞ � qð0Þi
3

¼ Aac;sh expð�t=sac;shÞ þ Aac;lg expð�t=sac;lgÞ;

ð15Þ

as suggested by Che et al. [21]. With Eq. (4), the thermal

conductivity is then
k ¼ 1

kBVT 2
ðAac;shsac;sh þ Aac;lgsac;lgÞ � kac;sh þ kac;lg: ð16Þ

In Eqs. (15) and (16) the subscripts ac, sh, and lg refer

to acoustic, short range, and long range, respectively.

The nature of the HCACF and thermal conductivity

decompositions will be described in the following para-

graph and in Sections 5.2.2 and 5.2.3. The two stage

decay in the HCACF was first observed by Ladd et al.

[13]. It is in contrast to the Peierls theory of thermal

conductivity, which has been found to be consistent

with a single stage decay of the HCACF [13,22].

Kaburaki et al. [17] suggest that the two stages in the

HCACF represent contributions from local dynamics

and the dynamics of phonon transport, each having a

time constant s and strength A. The use of the term

�local’ is questionable, as in a crystal, there are no

localized vibrational modes. Che et al. [21] associate

the initial, fast decay of the HCACF with optical

phonons, which cannot be the case here, as the unit cell

is monatomic. The fit curves for the HCACF and

thermal conductivity for temperatures of 10, 50, and

100 K are shown in Fig. 4(a)–(c), respectively. The fit

captures the two stage decay very well at all tempera-

tures. The fits of a single exponential function with

time constant s1, according to

hqðtÞ � qð0Þi
3

¼ A1 expð�t=s1Þ; ð17Þ

are also shown in Fig. 4(a)–(c) for temperatures of 10,

50, and 100 K, respectively. The agreement with the raw

HCACF is reasonable at low and high temperatures, but

poor at the intermediate temperatures. The decomposi-

tion parameters (s and A, where appropriate) and

resulting thermal conductivities for all cases considered

are given in Table 1.

We interpret the two stage behavior of the fcc crys-

tal HCACF, and the resulting decomposition of the

thermal conductivity into two distinct components, in

the context of the phonon mean free path. While the

mean free path is generally taken to be an averaged

quantity (over all phonons in a system, as given by

Eq. (2), or over those of a given phonon mode, as given

by Eq. (1)), it can be applied to an individual phonon.

For a given phonon mode, there will thus be some

continuous distribution of mean free paths. Physi-

cally, the lower bound on the mean free path is given

by half of the phonon wavelength (the CP limit). We

believe that the first part of the thermal conductivity

decomposition (kac;sh) takes into account those phonons

with a mean free path equal to one half of their wave-

length. Phonons with a longer mean free paths are

accounted for by the second term (kac;lg), which has a

longer decay time. The suitability of this model is

assessed in the next two sections, and in Section 4 of

Part II.
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5.2.2. kac;sh: short range component

As shown in Table 1, with the exception of the 100 K

value, kac;sh shows little temperature dependence. The

average value (and spread) of the results is 0.094þ0:012
�0:016

W/mK. This type of behavior has been previously noted

[22], and we believe that it is a result of the coordination

of the atoms remaining constant as the density changes.

This point will be further discussed in Section 4.4 of

Part II.

Between temperatures of 40 and 80 K, there is an

agreement to within 7% between sac;sh and snn (which

was introduced and discussed in Section 4.2). Thus, the

first time scale in the HCACF decomposition is related

to how long it takes for energy to move between nearest

neighbor atoms. In additional studies (not reported

here), we have not observed any simulation cell size ef-

fects on the magnitude of sac;sh or kac;sh in the LJ argon

system, suggesting that the associated phonons are in the

higher frequency range of the acoustic branches (i.e.,

those with wavelengths on the order of a few atomic

spacings). From a real space perspective, one can

imagine the movement of a phonon through a system as

a series of energy transfers between neighboring atoms.

For a phonon with a mean free path on the order of its

wavelength (as assumed for kac;sh), this will correspond

to a few sac;sh, which explains why this is the time scale

found in the decomposition. This component of the

thermal conductivity is thus strongly a function of the

coordination of the atoms.

To understand the difference between sac;sh and snn at
the low temperatures, consider Fig. 2. As the energy

correlation curves have been normalized, the increasing
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from the mean values. Note the diminishing long time coherence as th

for the vertical axis for the T ¼ 10 and 20 K cases, along with curves
height of the first peak with increasing temperature can

be interpreted as an indication of the increasing impor-

tance of kac;sh to the total thermal conductivity. When

the temperature is 10 K, kac;sh only contributes 2% to the

thermal conductivity and the peak is not evident (al-

though there is a shoulder in the curve near the other

first peaks). At temperatures of 20 and 30 K, the dom-

inance of the long range acoustic modes leads to an

underestimation of snn from the energy correlation data.

To understand the difference between sac;sh and snn at the
high temperatures, we note that when sac;lg approaches

sac;sh (which happens as the temperature is increased),

the HCACF fitting procedure is not as accurate. Based

on the consistency of the snn results at the high tem-

peratures, we believe that the difference between the

values of sac;sh and snn is a numerical effect.

5.2.3. kac;lg: long range component

The idea of the crystalline thermal conductivity being

made up of temperature dependent and independent

components has been explored previously in attempts to

interpret experimental data [38,39]. In the decomposi-

tion given by Eq. (16), all of the temperature dependence

of the thermal conductivity is contained in kac;lg. This
component can be investigated using the energy corre-

lation function approach. Self-energy correlations (i.e.,

an autocorrelation), similar to the nearest neighbor

correlations shown in Fig. 2, are plotted in Fig. 5 for

temperatures of 10, 20, 50, and 100 K. While there is

coherent behavior over long time periods at the low

temperatures, this effect diminishes as the temperature

increases (this is also seen in the long time behavior for
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the nearest neighbor energy correlation functions,

shown in the inset of Fig. 2). This is consistent with the

temperature trends in sac;lg and kac;lg. For temperatures

of 10 and 20 K (shown separately in the insets of Fig. 5),

exponentials with time constants equal to the appro-

priate sac;lg from the thermal conductivity decomposition

are superimposed. The trends in the energy correlation

curves are well bounded by the exponentials. The

manifestation of both sac;sh (described in Section 5.2.2)

and sac;lg outside of the HCACF supports the use of

energy correlation functions for understanding heat

transfer in the real space coordinates. We believe that

the intermediate time scale in the long time behavior at

lower temperatures (shown as si in Fig. 5 for the 10 K

curve) is associated with the periodic boundary condi-

tions.

It is interesting to note that the long time scale

behavior is made up of successive short time scale

interactions (sac;sh, also shown in Fig. 5). At the lower

temperatures, the atom to atom interactions propagate

step by step, leading to behavior with a period of 2sac;sh
over the long time scale. At higher temperatures, as the

phonon mean free path gets smaller, the overall beha-

vior approaches that of a damped oscillator (i.e., a

monotonic decay), as opposed to a set of coupled

oscillators (as seen at low temperatures), which can gain

and lose energy.

5.2.4. Comparison of thermal conductivity decomposition

to other integral specification techniques and to experi-

mental data

For a series of five sets of five simulations at a tem-

perature of 50 K for the fcc crystal (data not given), the

thermal conductivities calculated with Eq. (16) fall

within a range of 4.1% of their average value. We expect

this error to increase as the temperature decreases, and

longer correlation times are required for convergence.

The time constants sac;sh and sac;lg fall within ranges of

1.4% and 7.1% of their average values, respectively. We

expect the error in the time constants to increase as the

temperature increases. As sac;sh and sac;lg approach sim-

ilar values, the resolution of the two modes becomes

more difficult, even though the accuracy of specifying

the thermal conductivity increases.

The thermal conductivity predicted by the fit of a

single exponential function (Eq. (17), data not given) to

the fcc crystal HCACF agrees with the prediction of the

fit of the sum of two exponentials (Eq. (15), data given in

Table 1) to within 2.9% and 5.8% at the temperature

extremes of 10 and 100 K, respectively (see Fig. 4(a) and

(c)). At the intermediate temperatures, the difference

between the two predictions is as much as 31% (at a

temperature of 50 K, see Fig. 4(b)). This confirms the

importance of considering the two stage decay. The

success of the single exponential function at low tem-

peratures is due to the dominance of kac;lg. At high
temperatures, the single exponential succeeds because

the two time constants have similar values.

For the fcc crystal, the direct specification of the

integral and the FD method (data not given) agree to

within 2% at all temperatures. The thermal conductivi-

ties calculated by the fit of Eq. (15) to the HCACF be-

tween temperatures of 30 and 100 K (data given in Table

1) agree with the direct specification and FD predictions

to within 4%. At temperatures of 10 and 20 K, the fit

gives values 7.5% and 6.5% lower than the FD method.

At these low temperatures, the exponential decay is not

able to fully capture the long tail. A similar finding, al-

though more severe, has been made by Schelling et al.

for silicon at a temperature of 1000 K [29]. They find

that a single exponential fit to the HCACF gives a

thermal conductivity value 42% lower than that found

from the direct specification of the integral. The thermal

conductivities studied are around 50 W/mK, so that

based on our prediction of the order of kac;sh, considering
two exponentials would not affect the results. They

indicate that such exponential fits are not suitable. We

do not find evidence to support this in the current sim-

ulations, which may be due to the lower thermal con-

ductivity values involved. The fit value is used in

subsequent calculations.

The fit of a single exponential to the liquid HCACF

predicts a thermal conductivity (given in Table 1) that

agrees with that predicted by the direct specification and

FD methods (data not given) to within 3% for all cases,

justifying the assumed functional form. The amorphous

phase HCACF cannot be fit to a specific functional

form. Its thermal conductivity is specified directly from

the integral. The amorphous results are independent of

temperature. We attribute this to the small temperature

range studied, the approximately constant specific heat

in the classical MD simulations, and the attainment of

the CP limit (i.e., the mean free path is a minimum, and

equal to one half of the wavelength of a given mode).

Further discussion of the amorphous phase thermal

conductivity is given in Part II with respect to amor-

phous silica.

The predicted thermal conductivities, experimental

values [40], and the CP limit for argon are shown in Fig.

6 as a function of temperature. The fcc crystal MD re-

sults are in reasonable agreement with the trend and

magnitude of the experimental data (a decrease above

the experimental peak value, which is near a temperature

of 6 K), justifying the neglection of quantum effects. The

data are in better agreement than those of Li [22] when

compared to the experimental data, which can be

attributed to the larger cutoff used here in the MD

simulations. The experimental liquid data correspond to

saturation conditions, and agree very well with the MD

predictions.

As given in Eq. (3), the CP limit is a quantum, har-

monic expression. The MD simulations are classical and
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anharmonic. As such, for use in Fig. 6, we take the

classical limit of Eq. (3) (i.e., the mode specific heat

kBx2ex=ðex � 1Þ2 equal to kB), to give

kCP ¼ 1

2

p
6

� �1=3
bkBn2=3

X
i

ui: ð18Þ

The number density is taken from the fcc crystal MD

results. Due to anharmonic effects at finite temperatures,

the specific heat will deviate from the classical-harmonic

value, which is accounted for by the factor b. The spe-

cific heat can be calculated from the MD simulations as

the rate of change of the total system energy as a func-

tion of temperature at constant volume. The results

for the fcc crystal are well described by a linear fit to

the data, given by

b ¼ 0:996� 0:000905ð1=KÞT ; ð19Þ

where the temperature is in Kelvin. The amorphous

specific heat results fall within one percent of the fcc

crystal data. As the temperature increases, anharmonic

effects become more important, and the deviation from

the classical-harmonic value of the specific heat in-

creases. Eq. (19) is used over the entire temperature

range in the evaluation of Eq. (18). The temperature

dependence of the sound speeds is obtained from quasi-

harmonic dispersion curves in the [1 0 0] direction (not

shown) based on the fcc crystal simulation cell sizes.

There will be a difference between the amorphous sound

speeds and those for the fcc crystal. As no sound speed

data are available for the amorphous LJ phase, we use

the fcc crystal values, scaled by a factor of 0.8 (typical

for silicon and germanium [1,10]). Under these approxi-

mations, the CP limit is plotted with the understanding

that there will be some error in the calculated values.
Based on the association of kac;sh with kCP we might

expect that kac;sh, kamorphous, and kCP would be the same.

However, as shown in Fig. 6, this is not the case. There

are a number of possible explanations. First, as dis-

cussed in the previous paragraph, the calculated kCP
contains a number of approximations, so that the ob-

served differences (a factor of about two) may be

acceptable. Secondly, the mean free paths in the amor-

phous phase may actually be larger than half of the

associated wavelength, leading to a larger value than

kac;sh. We note that in additional studies (not shown), we

have not found any size dependence of kamorphous, so that

the artificial periodicity imposed by the use of periodic

boundary conditions is not a factor. In the liquid phase,

the thermal conductivity drops below the fcc crystal

value to near kac;sh. Once the solid phase has been

eliminated, only short range interactions are important.

The lack of fixed atomic positions in the liquid leads to

an improved efficiency of these interactions in the

transfer of heat, a shorter time constant, and a slightly

higher thermal conductivity than kac;sh.
5.3. Time constant comparison

For the fcc crystal, the time constants sac;sh, sac;lg and
s1 have been obtained in Section 5.2.1 by fitting expo-

nential functions to the HCACF. In this section, two

additional time constants are obtained.

From the transient heat conduction energy equation,

the time scale associated with the diffusion of heat (the

transient diffusion time, std) can be estimated as [41]

std ¼
l2td

ð2pÞ2a
: ð20Þ

Here, the length scale ltd is taken as sac;lgu, where u is

an averaged phonon speed of sound, determined from

the [1 0 0] direction quasi-harmonic dispersion curves as

3

u2
¼
X
i

1

u2i
: ð21Þ

The summation in Eq. (21) is over the three sound

modes of the crystal. In Eq. (20), a is the thermal dif-

fusivity, approximated here as k=qcv. The specific heat is
calculated directly from the MD simulations as dis-

cussed in Section 5.2.4.

For time scales shorter than std, the results of Volz

et al. [41] (who refer to it as the hydrodynamic time)

indicate that the HCACF should be of the form

hqðtÞ � qð0Þi
3

¼ hqð0Þ � qð0Þi
3

expð�t=sVÞ; ð22Þ

so that from Eq. (4),

sV ¼ 3kT 2VkB
hqð0Þ � qð0Þi : ð23Þ
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We specify a criterion of sac;lg less than std for the use of

this formulation, allowing our data to be used at tem-

peratures of 80 K and below. It is interesting to note that

Volz et al. associate sV with the time constant in the

hyperbolic heat conduction equation. At time scales on

the order of sV, this equation predicts an exponential

decay of the HCACF, consistent with the observed form

from MD.

The time constants sac;sh, sac;lg, s1 and sV are all decay

times associated with the HCACF in the GK method.

The mode dependent kinetic theory time constants, sK;i,

given by Eq. (1), are different. They are associated with

the behavior of a specific phonon mode i. To make a

comparison with sac;sh, sac;lg, s1, and sV, the integrated

kinetic theory time constant, sK, must be considered. To

obtain sK, the MD results for the thermal conductivity

are used. The speed of sound and specific heat are cal-

culated in the same manner as described for std.
The time constants s1, sK, and sV are given in Table

2. In Fig. 4(a)–(c), the raw HCACF, and the fits of Eqs.

(15), (17), and (22) are shown for temperatures of 10, 50,

and 100 K, respectively. For the sake of completeness,

we include the sV data and fits at all temperatures. The

fits of one and two term exponentials have been dis-

cussed in Section 5.2. The Volz et al. model, which forces

the thermal conductivity and zero time intercept of the

HCACF to match the raw data, only gives a reasonable

fit at high temperatures, when sac;lg is on the order of

sac;sh.
The single mode time constants s1 and sV fall in be-

tween those from the thermal conductivity decomposi-

tion, sac;sh and sac;lg. The value of s1 shows a transition

between sac;sh and sac;lg as the contribution of kac;lg to the

thermal conductivity decreases. Volz et al., who only

consider high temperatures and pressures (giving ther-

mal conductivities greater than 4 W/mK), find agree-

ment between sK and sV to within 7%. They attribute the

good agreement to both models having been derived

from the BTE. They argue that the agreement is

dependent on the existence of a single stage relaxation.
Table 2

Time constants determined from different models for the fcc

crystal

T , K s1, ps sK, ps sV, ps

10 20.7 6.48 6.88

20 7.58 2.56 2.91

30 3.66 1.49 1.83

40 1.72 0.964 1.28

50 0.793 0.710 1.03

60 0.555 0.574 0.924

70 0.424 0.429 0.773

80 0.374 0.391 0.799

90 0.316 0.318 0.770

10 0.273 0.276 0.852
Based on the high thermal conductivities they find, and

on our specification of kac;sh near 0.1 W/mK, this may be

a valid assumption for the cases considered. In the

current calculations, the agreement between sK and sV is

poor, which is most likely due to the lower thermal

conductivities considered. In fact, the value of sK seems

to be approaching a constant value as the tempera-

ture increases, consistent with an approach to the CP

limit behavior. The high temperature agreement between

sV and s1 suggests that our criteria for the use of the

Volz et al. model (sac;lg less than std) may have been too

strict.

Regardless of this analysis, the single time constant

approach is clearly not generally correct in a crystal.

This is evident from the shape of the HCACF, and from

our independent observations of the time constants sac;sh
and sac;lg in the MD simulations. There is no evidence

that the single exponential time constants are manifest in

the physics of the atomic motions. They are only pheno-

menological quantities, convenient for simple analysis,

but without any general physical interpretation.
5.4. Frequency integration and comparison to Boltzmann

transport equation

The BTE can be used to predict the thermal con-

ductivity. While MD can be used to generate the neces-

sary input, this is an involved procedure, and has been

described elsewhere [42]. However, it is still possible to

investigate how the value of the thermal conductivity is

obtained using the BTE by constructing a simple model.

In the MD simulations, phonon scattering is only a

result of normal and Umklapp processes. The Callaway

model for the thermal conductivity, obtained from the

BTE under the Debye and relaxation time approxima-

tions, is given by [4]

k ¼ a
T 2

1

b1 þ b2

Z TD=T

0

x2exðex

2
64 � 1Þ�2

dx

þ 1

b1 þ b2

b2
b1

R TD=T
0

x4exðex � 1Þ�2
dx

� �2
R TD=T
0

x6exðex � 1Þ�2
dx

3
75; ð24Þ

where a is k2B=2p
2u�h, and b1 and b2 are coefficients re-

lated to the normal and Umklapp relaxation times

through

1=si ¼ biT 3x2; i ¼ 1 ðUmklappÞ; 2 ðnormalÞ: ð25Þ

These time constants are the same as the mode depen-

dent kinetic theory time constants, sK;i. When resistive

processes dominate, the thermal conductivity can be

approximated by the first term of Eq. (24), which, in a

classical system becomes
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Fig. 7. (a) Comparison of the cumulative frequency depen-

dence of the thermal conductivity from GK and BTE ap-

proaches for T ¼ 10, 50, and 100 K. The 10 K curves

correspond to the right vertical axis, while the 50 and 100 K

curves correspond to the left vertical axis. The BTE integration

is over individual phonon frequencies, while the GK frequencies

correspond to phonon–phonon interaction frequencies. (b)

Phonon dispersion curves calculated from the zero temperature

MD configuration. a is the lattice constant and j is the wave

number. (c) Normalized Fourier transform of the HCACF for

T ¼ 10, 50, and 100 K.
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k ¼ a
T 2

1

b1 þ b2

2pb�h
kBT

Z fD=f

0

df ; ð26Þ

where f is frequency (equal to x=2p). The cumulative

frequency dependence of the thermal conductivity is

thus linear in this approximate formulation.

In the MD simulations, the thermal conductivity is

calculated using the GK method from the integral of the

HCACF. The integral can also be performed over fre-

quency. The Fourier transform of the HCACF is taken,

and then filtered beyond a frequency f . The inverse

Fourier transform of the filtered function is taken, and

integrated in time according to Eq. (4). The resulting

thermal conductivity is plotted at frequency f . Note that

this procedure is not the same as the GK frequency

space method used by Lee et al. [14], and Volz and Chen

[24] to predict the thermal conductivity.

By fitting the value of b1 þ b2 in Eq. (26) to the GK

thermal conductivity results, Eq. (26) and the GK fre-

quency integral described in the previous paragraph can

be compared. The results for temperatures of 10, 50, and

100 K are shown in Fig. 7(a). In the BTE approach all

frequencies contribute equally to the thermal conduc-

tivity, resulting in a linear approach to the total value.

The MD simulations give a very different result, placing

more weight on the lower frequencies, and the total

conductivity is approached asymptotically. The differ-

ence between these two approaches is a result of the

frequency over which the integration is performed.

While the BTE integrates over the frequencies of indi-

vidual phonons (as shown in the zero temperature MD

dispersion curves in Fig. 7(b)), the frequencies in the GK

method are related to phonon–phonon interactions

(shown through the Fourier transform of the HCACF in

Fig. 7(c)). The difference between these two frequencies

is equivalent to that between the phonon wavelength

and its mean free path.

5.5. Suitability of Green–Kubo method

We believe that the success of the GK method in

small computational cells stems from the fact that while

long wavelengths cannot exist, the use of periodic

boundary conditions allows for long mean free paths.

This interpretation explains why significant size effects

are not usually encountered in GK studies, and stresses

the importance of distinguishing between these two

length scales (the phonon wavelength and its mean free

path) when discussing phonon transport. Along these

lines, the size effects encountered when using the direct

method to calculate the thermal conductivity are present

because phonons are not allowed to fully decay. While

long wavelength modes can exist, the mean free paths of

all the allowed phonon modes are not realized. The di-

rect method may be more appropriate for amorphous

materials, where the mean free path is very small, and
easily captured. However, in these cases, thermal

boundary resistances at the hot and cold reservoirs are

still present, and size effects may still be significant.
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That being said, we note that the success of the GK

method in MD is not universal. For example, even with

large computational cells that eliminate size effects, MD

simulations of diamond at a temperature of 300 K

predict a thermal conductivity of 1200 W/mK [21]. This

is almost half of the experimental value of 2300 W/mK.

On the other hand, MD simulations of germanium over

predict the experimental room temperature thermal

conductivity of 63 W/mK by a factor of two [25]. When

MD results over predict the experimental thermal con-

ductivity, it is often assumed to be because the MD

system contains no impurities, which removes a source

of phonon scattering. When MD under predicts the

experimental results, the assumption is often that it is

because the simulation cell was too small to capture long

wavelength phonons. However, size effects can be taken

into account, and very high purity single crystals are

available in experimental investigations. As such, it is

most likely that the discrepancies found between

experimental data and MD-GK predictions are a result

of the interatomic potentials used.
6. Summary

Using MD simulations and the GK method, the

thermal conductivity of the fcc LJ argon crystal has been

decomposed into two components (given by Eq. (16)).

As the unit cell is monatomic, both thermal conductivity

components are associated with acoustic phonons. The

first component, kac;sh, corresponds to short wavelength

acoustic phonons with mean free paths equal to one half

of their wavelength (the limiting value suggested in

the CP limit). The contribution of this component to the

thermal conductivity is temperature independent. The

second component, kac;lg, corresponds to acoustic pho-

nons with mean free paths longer than one half of their

wavelength. This component is temperature dependent,

and dominates the magnitude of the total thermal con-

ductivity at all but the highest temperatures considered.

The thermal conductivity decomposition gives a

decay time constant for each of the two components,

which have been independently observed in the simula-

tions (see Figs. 2 and 5, and Sections 5.2.2 and 5.2.3).

The decay time of the first mode corresponds to the time

needed for energy to transfer between an atom and one

of it nearest neighbors. The decay time for the second

mode represents the average decay of those phonons

with mean free paths larger than one half of their

wavelength. These two time scales contrast to the single

decay times used in BTE and kinetic theory approaches,

which are phenomenological and only represent physical

quantities under certain conditions (see Fig. 4 and Sec-

tion 5.3).

In the following paper, Part II, the tools developed in

this study are extended to a family of structures built
from SiO4 tetrahedra. The large unit cells of these

materials lead to the existence of optical phonons, which

must be included in the thermal conductivity decom-

position. The variety of structures available allows for a

more detailed investigation of the effects of atomic

structure on thermal transport, and the development

of structural metrics associated with low thermal con-

ductivity crystals.
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